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Abstract. Chiral symmetry restoration in high-lying hadron spectra implies that hadrons which belong
to different irreducible representations of the parity-chiral group cannot mix. This explains why the
f0(2102± 13), which was suggested to be a glueball, and hence must belong to the scalar (0,0) repre-
sentation of the chiral group, cannot mix with the neighbouring f0(2040± 38), which was interpreted as a
nn̄ state, and that belongs to the (1/2, 1/2) representation of the chiral group. If confirmed, then we have
an access to a “true” glueball of QCD.

PACS. 12.39.Mk Glueball and nonstandard multi-quark/gluon states – 11.30.Rd Chiral symmetries

1 Introduction

The puzzle of the 0++ f0-resonances has attracted a sig-
nificant attention for the last decade (for recent reviews
and references see [1–3]). The reason is that there have
been discovered more f0-mesons than can be accomodated
by the quark model. This also fits with the expectations
that there should be a glueball state with the same quan-
tum numbers around the 1.5 GeV region. And indeed, an
analysis of numerous available experimental data suggests

that f0(1370) is mostly a nn̄ = uū+dd̄√
2

state, f0(1710) is

mostly a ss̄ state and f0(1500) is dominantly a glueball [4].
Other alternatives have also been discussed [5]. The decay
modes of these mesons suggest that the physical mesons
above are some mixtures of the pure quark-antiquark and
glueball states.

Recently, there have appeared results of the partial-
wave analysis of the mesonic resonances obtained in the
pp̄ annihilation at LEAR in the region 1.8–2.4 GeV [6–8].
In particular, four high-lying f0 have been reported:

f0(1770± 12), f0(2040± 38) ,

f0(2102± 13), f0(2337± 14) .

It has been suggested that f0(2102±13) should be a glue-
ball, while f0(1770± 12), f0(2040± 38) and f0(2337± 14)
are nn̄ states. The motivation for such an interpretation
was the following: i) all these states are observed in pp̄,
hence according to OZI rule they cannot be ss̄ states;
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ii) f0(2102 ± 13) decays more strongly to ηη than to ππ.
It requires a large mixing angle, in contrast to the other
three f0 states. It can be interpreted naturally only if
f0(2102± 13) is not a nn̄ state, but a glueball.

If f0(2102 ± 13) is a glueball, a question then arises
as why does it not mix with the neighbouring broad
f0(2040±38), which is supposed to be a nn̄ state? “When a
particle is observed experimentally it does not come labeled
“quark-antiquark” or “glueball”, nor is there any strict ob-
jective criterion to distinguish them. The whole distinction
is tied up with the naive quark model, which has no firm
basis in quantum field theory, and ignores the inevitability
of mixing.” [9].

The aim of the present letter is to offer a natural expla-
nation of the absence of a strong mixing. It has been ar-
gued recently that high in the hadron spectrum the spon-
taneously broken chiral symmetry of QCD is effectively
restored [10–14]1. A possible fundamental physical ground
is that, in hadrons with large n (radial quantum number)
or large L, the semiclassical approximation must be valid
and hence the effects of quantum fluctuations of the quark
and gluon fields must be suppressed [16]. If chiral symme-
try is approximately restored, then the index of the rep-
resentation of the chiral group, to which the given hadron
belongs, becomes a good quantum number. Hence, a mix-
ing of hadrons that belong to different representations is

1 This phenomenon has been referred to [15] as chiral sym-

metry restoration of the second kind in order to distinguish it
from the familiar phenomenon of chiral symmetry restoration
in the QCD vacuum at high temperature and/or density.
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forbidden, even though all other quantum numbers are the
same and hadrons are close in energy. This then explains
the absence of a strong mixing between the f0(2040± 38)
state, which is a member of the (1/2, 1/2) representation
of the chiral group [13], with a glueball, which belongs to
a scalar representation (0,0).

2 The evidence and theoretical justification

of chiral symmetry restoration in high-lying

hadrons

We overview first a QCD-based justification of chiral
symmetry restoration in high-lying spectra [11,12].
Consider two local currents (interpolating fields) J1(x)
and J2(x) which are connected by chiral transformation,
J1(x) = UJ2(x)U

†, where U ∈ SU(2)L × SU(2)R. These
currents, when acting on the QCD vacuum |0〉, create
hadron states with quantum numbers “1” and “2”,
respectively. All these hadrons are the intermediate states
in the two-point correlators

ΠJα(q) = i

∫

d4x e−iqx〈0|T {Jα(x)Jα(0)} |0〉, (1)

where all possible Lorentz indices (which are specific
for a given interpolating field) have been omitted, for
simplicity. At large space-like momenta Q2 = −q2 > 0 the
correlator can be adequately represented by the operator
product expansion, where all nonperturbative effects
reside in different condensates [17]. The only effect that
spontaneous breaking of chiral symmetry can have on
the correlator is via the quark condensate of the vacuum,
〈qq̄〉, and higher dimensional condensates that are not
invariant under chiral transformation U . However, the
contributions of all these condensates are suppressed by
inverse powers of momenta Q2. This shows that at large
space-like momenta the correlation function becomes
chirally symmetric. In other words

ΠJ1
(Q)→ ΠJ2

(Q) at Q2 →∞. (2)

The dispersion relation provides a connection between the
space-like and time-like domains for the Lorentz scalar (or
pseudoscalar) parts of the correlator. In particular, the
large-Q2 correlator is completely dominated by the large-s
spectral density ρ(s), which is an observable. Hence the
large-s spectral density should be insensitive to the chiral
symmetry breaking in the vacuum and must satisfy

ρ1(s)→ ρ2(s) at s→∞. (3)

This is in contrast to the low-s spectral densities ρ1(s)
and ρ2(s), which are very different because of the chiral
symmetry breaking in the vacuum. This manifests a
smooth chiral symmetry restoration from the low-lying
spectrum to the high-lying spectrum (chiral symmetry
restoration of the second kind)2.

2 A theoretical expectation that chiral symmetry must be
restored high in the spectra is supported by the recent data on

Since the inclusive data indicate that the quark-hadron
duality picture starts to work in the resonance region, we
have to anticipate in this region a nontrivial implication
of chiral symmetry. Indeed, if chiral symmetry restora-
tion happens in the regime where the spectrum is still
quasidiscrete (i.e. it is dominated by resonances and the
successive resonances with the given spin are well sepa-
rated), then these resonances must fill out representations
of the parity-chiral group. There are evidences both in
baryon [10–12] and in meson spectra [13,14] that light
hadrons above m ∼ 1.7 GeV fill out representations of the
parity-chiral group, which are manifest as parity doublets
or higher chiral representations. Nevertheless, a system-
atic experimental exploration of the high-lying hadrons is
required in order to make definitive statements.

While the asymptotic prediction (3) is rather robust
(it is based only on the asymptotic freedom of QCD in
the deep space-like domain and on the analyticity of the
two-point correlator; the earliest application of asymptotic
freedom to e+e− → hadrons is ref. [22]), it does not tell
us which physics could be associated with the chiral sym-
metry restoration in the isolated hadron. This question
has been addressed in ref. [16]. One of the possibilities is
that the chiral symmetry breaking (i.e. dynamical quark
mass generation) is due to quantum fluctuations of the
quark and gluon fields. This can be seen from the fact that
the chiral symmetry breaking can be formulated via the
Schwinger-Dyson equation. For the present context it is
not important at all which specific gluonic interactions are
the most important ones in the kernel of the Schwinger-
Dyson equation, instantons, gluon exchanges or anything
else. If the effects of quantum fluctuations of the quark
and gluon fields are suppressed, then the dynamical mass
of quarks must vanish. At large n (radial quantum num-
ber) or at large angular momentum L we know that in
quantum systems the effects of quantum fluctuations be-
come indeed suppressed and the semiclassical approxima-
tion (WKB) must work3. Physically, this approximation
applies in these cases because the de Broglie wavelength
of the valence quarks in the hadron is small in compari-
son with the size of the hadron. If so, the chiral symmetry

the difference between the vector and axial-vector spectral den-
sities. This difference has been extracted from the weak decays
of the τ -lepton by the ALEPH and OPAL Collaborations [18,
19]. The nonzero difference is entirely from the spontaneous
breaking of chiral symmetry. It is well seen from the results
that while the difference is large at the masses of ρ(770) and
a1(1260), it becomes very strongly reduced towards m =

√
s ∼

1.7 GeV. This is also seen from e+e− → hadrons, where start-
ing approximately from the same energy the spectral density
oscillates around perturbative QCD prediction [20]. Similarly,
recent data of JLab on inclusive electroproduction of baryonic
resonances in the mass region 3.1 ≤ M 2 ≤ 3.9 GeV2 are per-
fectly dual to deep inelastic data [21].

3 For example, the Lamb shift in the hydrogen atom is en-
tirely due to the quantum fluctuations of the electromagnetic
and electron fields, which are the vertex correction, electron
self-energy and the vacuum polarization diagrams. The Lamb
shift vanishes very fast with n, ∼ 1/n3, and also very fast
with L.
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Fig. 1. Pion and nn̄ f0 spectra. The three highest states in
both pion and f0 spectra are taken from [6–8]. Since these f0

states are obtained in pp̄ and they decay predominantly into
the ππ channel, they are considered in [6–8] as nn̄ states.

must be effectively restored in high-lying hadrons. So a
very natural picture for highly excited hadrons is a string
with bare quarks of definite chirality at the end-points [14].

3 Chiral quantum number as a good

quantum number

In the low-lying hadrons, where the effects of chiral sym-
metry breaking in the vacuum SU(2)L × SU(2)R →
SU(2)I are strong, only isospin is a good quantum num-
ber among those that are potentially supplied by the chiral
group. In the regime where chiral symmetry is (approxi-
mately) restored, a new good quantum number appears,
that characterizes a parity-chiral multiplet. This quantum
number is an index of the irreducible representation of
the parity-chiral group4. For example, the vector (ρ) and
axial-vector (a1) mesons, in the chirally restored regime
become chiral partners and fill out in pairs (0, 1)⊕(1, 0) ir-
reducible representations of the parity-chiral group. Their
valence content is given as [14]

ρ :
1√
2

(

R̄~τγµR+ L̄~τγµL
)

, (4)

4 The irreducible representations of SU(2)L × SU(2)R can
be labeled as (IL, IR) with IL and IR being the isospins of
the left and right subgroups. However, generally the states
that belong to the given irreducible representation of the chi-
ral group cannot be ascribed a definite parity because under
parity transformation the left-handed quarks transform into
the right-handed ones (and vice versa). Therefore under a par-
ity operation the irreducible representation (IL, IR) transforms
into (IR, IL). Hence, in general, the state (or current) of defi-
nite parity can be constructed as a direct sum of two irreducible
representations (IL, IR)⊕ (IR, IL), which is an irreducible rep-
resentation of the parity-chiral group [12].

a1 :
1√
2

(

R̄~τγµR− L̄~τγµL
)

. (5)

The valence composition of nn̄ f0- and π-mesons in
the chirally restored regime is

f0 :
1√
2

(

R̄L+ L̄R
)

, (6)

π :
1√
2

(

R̄~τL− L̄~τR
)

. (7)

Both these mesons fill out in pairs the (1/2, 1/2) represen-
tations of the parity-chiral group [13]. The experimental
data in the range 1.8–2.4 GeV are summarized in the fol-
lowing table:

Meson I JP Mass (MeV) Width (MeV) Reference

f0 0 0+ 1770± 12 220± 40 [6]
f0 0 0+ 2040± 38 405± 40 [7]
f0 0 0+ 2102± 13 211± 29 [7]
f0 0 0+ 2337± 14 217± 33 [7]
π 1 0− 1801± 13 210± 15 [1]
π 1 0− 2070± 35 310+100

−50 [8]

π 1 0− 2360± 25 300+100
−50 [8]

It is well seen that while the chiral symmetry is
strongly broken low in the spectrum, the high-lying nn̄
f0- and π-mesons indeed form chiral pairs (see also fig. 1):

π(1300± 100)-f0(1370
+130
−170), (8)

π(1801± 13)-f0(1770± 12), (9)

π(2070± 35)-f0(2040± 38), (10)

π(2360± 25)-f0(2337± 14). (11)

A true glueball (G) has no valence quark content and
hence must belong to the scalar representation of the
parity-chiral group, G ∼ (0, 0).

If chiral symmetry is a good symmetry then the in-
dex of the corresponding irreducible representation of the
parity-chiral group becomes a good quantum number.
Hence, quantum mechanics forbids a mixing of the states
that belong to different representations, even though all
other quantum numbers coincide and states are close in
energy. Since the true glueball by definition belongs to
the (0, 0) representation and the approximately degener-
ate f0- and π-mesons form the (1/2, 1/2) representation,
they cannot be mixed. This explains why f0(2102), which
is presumably a glueball and has no partner in the pion
spectrum, and which is very close to f0(2040), that is a nn̄
state, does not mix with the latter. If confirmed by a de-
tailed study of decay modes, it would be better to rename
f0(2102) as G(2102).

Clearly, the chiral restoration is not exact at masses of
2 GeV, so a small amount of mixing is still possible. Hence,
it is a very important experimental task to study in detail
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decay modes and mixings of these high-lying states. The
prize for these efforts would be that we identify and study
a “true” glueball.

We can also look at the same problem from the other
perspective. If a detailed study of decay modes confirmes
that f0(2102) is a glueball and that f0(2040) is a nn̄ state,
then it would be an independent confirmation of chiral
symmetry restoration.

As a conclusion, chiral symmetry restoration high in
the hadron spectra provides a natural basis for the absence
of a strong mixing between those scalar mesons that are
chiral partners of pions, and those scalar mesons, that rep-
resent a glueball. Then we have an opportunity to study
a “true” glueball of QCD.

The work was supported by the FWF project P14806-TPH of
the Austrian Science Fund.
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